
introduction
to computing

systems

yale n. patt
sanjay j. patel

f r o m b i t s & g a t e s t o
C / C + + & b e y o n d

third edition

introduction to
computing systems

third edition

introduction to
computing systems

from bits & gates to C/C++ & beyond

Yale N. Patt
The University of Texas at Austin

Sanjay J. Patel
University of Illinois at Urbana-Champaign

INTRODUCTION TO COMPUTING SYSTEMS: FROM BITS & GATES TO C/C++ & BEYOND, THIRD EDITION

Published by McGraw-Hill Education, 2 Penn Plaza, New York, NY 10121. Copyright c©2020 by McGraw-Hill Education. All rights

reserved. Printed in the United States of America. Previous editions c©2004, and 2001. No part of this publication may be reproduced

or distributed in any form or by any means, or stored in a database or retrieval system, without the prior written consent of McGraw-Hill

Education, including, but not limited to, in any network or other electronic storage or transmission, or broadcast for distance learning.

Some ancillaries, including electronic and print components, may not be available to customers outside the United States.

This book is printed on acid-free paper.

1 2 3 4 5 6 7 8 9 LCR 24 23 22 21 20 19

ISBN 978-1-260-15053-7 (bound edition)

MHID 1-260-15053-4 (bound edition)

ISBN 978-1-260-42474-4 (loose-leaf edition)

MHID 1-260-42474-X (loose-leaf edition)

Executive Portfolio Manager: Suzy Bainbridge
Product Developer: Heather Ervolino
Senior Marketing Manager: Shannon O’Donnell
Content Project Manager: Jeni McAtee
Buyer: Sandy Ludovissy
Designer: David Hash
Content Licensing Specialist: Melissa Homer
Cover Image: Front Cover Computing art c©Yale N. Patt; Abstract image in green, orange and yellow c©Design Pics/Tim Antoniuk;
Abstract image in orange, green and yellow c©Design Pics/Tim Antoniuk; Computer laptops on a blue abstract background c©loops7/
Getty Images; Illustration of streams of binary code c©Shutterstock/Tavarius
Compositor: Aptara R©, Inc.

All credits appearing on page or at the end of the book are considered to be an extension of the copyright page.

Library of Congress Cataloging-in-Publication Data

Names: Patt, Yale N., author. Patel, Sanjay J., author.

Title: Introduction to computing systems : from bits & gates to c/c++ &

beyond / Yale N. Patt, The University of Texas at Austin, Sanjay J. Patel,

University of Illinois at Urbana-Champaign.

Description: Third edition. New York, NY : McGraw-Hill, 2020.

Identifiers: LCCN 2018050089 ISBN 9781260150537 (acid-free paper) ISBN

1260150534 (acid-free paper)

Subjects: LCSH: Computer science. C (Computer program language)

Classification: LCC QA76 .P367 2019 DDC 004–dc23 LC record available at

https://lccn.loc.gov/2018050089

The Internet addresses listed in the text were accurate at the time of publication. The inclusion of a website does not indicate an endorse-

ment by the authors or McGraw-Hill Education, and McGraw-Hill Education does not guarantee the accuracy of the information presented

at these sites.

mheducation.com/highered

To the memory of my parents,
Abraham Walter Patt A"H and Sarah Clara Patt A"H,
who taught me to value “learning”
even before they taught me to ride a bicycle.

To my loving family,
Amita, Kavi, and Aman.

Contents

Preface xv

1 Welcome Aboard 1
1.1 What We Will Try to Do 1
1.2 How We Will Get There 1
1.3 Two Recurring Themes 3

1.3.1 The Notion of Abstraction 3
1.3.2 Hardware vs. Software 5

1.4 A Computer System 7
1.4.1 A (Very) Little History for a (Lot)

Better Perspective 8
1.4.2 The Parts of a Computer

System 10
1.5 Two Very Important Ideas 11
1.6 Computers as Universal

Computational Devices 12
1.7 How Do We Get the Electrons to Do

the Work? 14
1.7.1 The Statement of the Problem 14
1.7.2 The Algorithm 16
1.7.3 The Program 16
1.7.4 The ISA 17
1.7.5 The Microarchitecture 18
1.7.6 The Logic Circuit 19
1.7.7 The Devices 19

Exercises 20

2 Bits, Data Types,
and Operations 25
2.1 Bits and Data Types 25

2.1.1 The Bit as the Unit of Information 25
2.1.2 Data Types 26

2.2 Integer Data Types 26
2.2.1 Unsigned Integers 26
2.2.2 Signed Integers 27

2.3 2’s Complement Integers 29

2.4 Conversion Between Binary and Decimal 31
2.4.1 Binary to Decimal Conversion 31
2.4.2 Decimal to Binary Conversion 32
2.4.3 Extending Conversion to Numbers with

Fractional Parts 33
2.5 Operations on Bits—Part I: Arithmetic 34

2.5.1 Addition and Subtraction 34
2.5.2 Sign-Extension 36
2.5.3 Overflow 36

2.6 Operations on Bits—Part II: Logical
Operations 38
2.6.1 A Logical Variable 38
2.6.2 The AND Function 38
2.6.3 The OR Function 39
2.6.4 The NOT Function 40
2.6.5 The Exclusive-OR Function 40
2.6.6 DeMorgan’s Laws 41
2.6.7 The Bit Vector 42

2.7 Other Representations 43
2.7.1 Floating Point Data Type (Greater Range,

Less Precision) 43
2.7.2 ASCII Codes 47
2.7.3 Hexadecimal Notation 48

Exercises 49

3 Digital Logic Structures 59
3.1 The Transistor 59
3.2 Logic Gates 61

3.2.1 The NOT Gate (Inverter) 61
3.2.2 OR and NOR Gates 62
3.2.3 Why We Can’t Simply Connect P-Type

to Ground 64
3.2.4 AND and NAND Gates 65
3.2.5 Gates with More Than Two Inputs 66

3.3 Combinational Logic Circuits 67
3.3.1 Decoder 67
3.3.2 Mux 68
3.3.3 A One-Bit Adder (a.k.a. a Full Adder) 69

viii Contents

3.3.4 The Programmable Logic
Array (PLA) 71

3.3.5 Logical Completeness 72
3.4 Basic Storage Elements 73

3.4.1 The R-S Latch 73
3.4.2 The Gated D Latch 74

3.5 The Concept of Memory 75
3.5.1 Address Space 75
3.5.2 Addressability 76
3.5.3 A 22-by-3-Bit Memory 76

3.6 Sequential Logic Circuits 78
3.6.1 A Simple Example: The

Combination Lock 79
3.6.2 The Concept of State 80
3.6.3 The Finite State Machine and Its

State Diagram 82
3.6.4 The Synchronous Finite

State Machine 85
3.6.5 The Clock 86
3.6.6 Example: A Danger Sign 87

3.7 Preview of Coming Attractions: The Data Path
of the LC-3 93

Exercises 95

4 The von Neumann Model 121
4.1 Basic Components 121

4.1.1 Memory 122
4.1.2 Processing Unit 123
4.1.3 Input and Output 124
4.1.4 Control Unit 125

4.2 The LC-3: An Example von
Neumann Machine 125

4.3 Instruction Processing 127
4.3.1 The Instruction 127
4.3.2 The Instruction Cycle (NOT the

Clock Cycle!) 130
4.3.3 Changing the Sequence of

Execution 132
4.3.4 Control of the Instruction Cycle 134
4.3.5 Halting the Computer (the TRAP

Instruction) 136
4.4 Our First Program: A Multiplication

Algorithm 137
Exercises 139

5 The LC-3 145
5.1 The ISA: Overview 145

5.1.1 Memory Organization 146
5.1.2 Registers 146

5.1.3 The Instruction Set 147
5.1.4 Opcodes 149
5.1.5 Data Types 149
5.1.6 Addressing Modes 150
5.1.7 Condition Codes 150

5.2 Operate Instructions 151
5.2.1 ADD, AND, and NOT 151
5.2.2 Immediates 152
5.2.3 The LEA Instruction (Although Not Really

an Operate) 154
5.3 Data Movement Instructions 155

5.3.1 PC-Relative Mode 156
5.3.2 Indirect Mode 158
5.3.3 Base+offset Mode 159
5.3.4 An Example 160

5.4 Control Instructions 161
5.4.1 Conditional Branches 162
5.4.2 Two Methods of Loop Control 165
5.4.3 The JMP Instruction 169
5.4.4 The TRAP Instruction 169

5.5 Another Example: Counting Occurrences
of a Character 170

5.6 The Data Path Revisited 173
5.6.1 Basic Components of the

Data Path 175
5.6.2 The Instruction Cycle Specific

to the LC-3 176
Exercises 177

6 Programming 203
6.1 Problem Solving 203

6.1.1 Systematic Decomposition 203
6.1.2 The Three Constructs: Sequential,

Conditional, Iterative 204
6.1.3 LC-3 Control Instructions to Implement

the Three Constructs 205
6.1.4 The Character Count Example from

Chapter 5, Revisited 206
6.2 Debugging 210

6.2.1 Debugging Operations 211
6.2.2 Use of an Interactive Debugger 212

Exercises 220

7 Assembly Language 231
7.1 Assembly Language Programming—Moving

Up a Level 231
7.2 An Assembly Language Program 232

7.2.1 Instructions 233
7.2.2 Pseudo-Ops (Assembler Directives) 236

Contents ix

7.2.3 Example: The Character Count Example
of Section 5.5, Revisited Again! 238

7.3 The Assembly Process 240
7.3.1 Introduction 240
7.3.2 A Two-Pass Process 240
7.3.3 The First Pass: Creating the

Symbol Table 241
7.3.4 The Second Pass: Generating the

Machine Language Program 242
7.4 Beyond the Assembly of a Single Assembly

Language Program 243
7.4.1 The Executable Image 244
7.4.2 More than One Object File 244

Exercises 245

8 Data Structures 263
8.1 Subroutines 263

8.1.1 The Call/Return Mechanism 265
8.1.2 JSR(R)—The Instruction That Calls

the Subroutine 266
8.1.3 Saving and Restoring Registers 267
8.1.4 Library Routines 269

8.2 The Stack 273
8.2.1 The Stack—An Abstract Data Type 273
8.2.2 Two Example Implementations 273
8.2.3 Implementation in Memory 274
8.2.4 The Complete Picture 278

8.3 Recursion, a Powerful Technique When Used
Appropriately 280
8.3.1 Bad Example Number 1: Factorial 280
8.3.2 Fibonacci, an Even Worse

Example 285
8.3.3 The Maze, a Good Example 288

8.4 The Queue 294
8.4.1 The Basic Operations: Remove from

Front, Insert at Rear 295
8.4.2 Wrap-Around 295
8.4.3 How Many Elements Can We Store

in a Queue? 296
8.4.4 Tests for Underflow, Overflow 297
8.4.5 The Complete Story 298

8.5 Character Strings 300
Exercises 304

9 I/O 313
9.1 Privilege, Priority, and the Memory

Address Space 314
9.1.1 Privilege and Priority 314
9.1.2 Organization of Memory 316

9.2 Input/Output 317
9.2.1 Some Basic Characteristics

of I/O 317
9.2.2 Input from the Keyboard 320
9.2.3 Output to the Monitor 322
9.2.4 A More Sophisticated Input

Routine 325
9.2.5 Implementation of Memory-Mapped

I/O, Revisited 326
9.3 Operating System Service Routines

(LC-3 Trap Routines) 327
9.3.1 Introduction 327
9.3.2 The Trap Mechanism 329
9.3.3 The TRAP Instruction 330
9.3.4 The RTI Instruction: To Return

Control to the Calling
Program 331

9.3.5 A Summary of the Trap Service
Routine Process 331

9.3.6 Trap Routines for Handling I/O 333
9.3.7 A Trap Routine for Halting

the Computer 335
9.3.8 The Trap Routine for Character Input

(One Last Time) 336
9.3.9 PUTS: Writing a Character String to

the Monitor 338
9.4 Interrupts and Interrupt-Driven I/O 339

9.4.1 What Is Interrupt-Driven I/O? 339
9.4.2 Why Have Interrupt-Driven I/O? 340
9.4.3 Two Parts to the Process 341
9.4.4 Part I: Causing the Interrupt to

Occur 341
9.4.5 Part II: Handling the Interrupt

Request 344
9.4.6 An Example 347
9.4.7 Not Just I/O Devices 349

9.5 Polling Revisited, Now That We Know
About Interrupts 350
9.5.1 The Problem 350
9.5.2 The Solution 351

Exercises 352

10 A Calculator 379
10.1 Data Type Conversion 380

10.1.1 Example: A Bogus Program:
2 + 3 = e 381

10.1.2 Input Data (ASCII to Binary) 381
10.1.3 Display Result (Binary

to ASCII) 385

x Contents

10.2 Arithmetic Using a Stack 387
10.2.1 The Stack as Temporary Storage 387
10.2.2 An Example 388
10.2.3 OpAdd, OpMult, and OpNeg 389

10.3 The Calculator 395
10.3.1 Functionality 395
10.3.2 Code 396

Exercises 402

11 Introduction to C/C++
Programming 405
11.1 Our Objective 405
11.2 Bridging the Gap 406
11.3 Translating High-Level Language

Programs 410
11.3.1 Interpretation 410
11.3.2 Compilation 411
11.3.3 Pros and Cons 411

11.4 The C/C++ Programming Languages 411
11.4.1 The Origins of C and C++ 411
11.4.2 How We Will Approach C

and C++ 412
11.4.3 The Compilation Process 413
11.4.4 Software Development

Environments 415
11.5 A Simple Example in C 415

11.5.1 The Function main 415
11.5.2 Formatting, Comments, and Style 417
11.5.3 The C Preprocessor 418
11.5.4 Input and Output 419

11.6 Summary 422
Exercises 422

12 Variables and Operators 425
12.1 Introduction 425
12.2 Variables 425

12.2.1 Four Basic Data Types 426
12.2.2 Choosing Identifiers 429
12.2.3 Scope: Local vs. Global 429
12.2.4 More Examples 431

12.3 Operators 432
12.3.1 Expressions and Statements 433
12.3.2 The Assignment Operator 433
12.3.3 Arithmetic Operators 434
12.3.4 Order of Evaluation 435
12.3.5 Bitwise Operators 436
12.3.6 Relational Operators 437

12.3.7 Logical Operators 438
12.3.8 Increment /Decrement Operators 439
12.3.9 Expressions with Multiple

Operators 441
12.4 Problem Solving Using Operators 441
12.5 Tying It All Together 444

12.5.1 Symbol Table 444
12.5.2 Allocating Space for Variables 445
12.5.3 A Comprehensive Example 447

12.6 Additional Topics 449
12.6.1 Variations of the Basic Types 450
12.6.2 Literals, Constants, and Symbolic

Values 451
12.6.3 Additional C Operators 452

12.7 Summary 453
Exercises 453

13 Control Structures 457
13.1 Introduction 457
13.2 Conditional Constructs 457

13.2.1 The if Statement 458
13.2.2 The if-else Statement 460

13.3 Iteration Constructs 464
13.3.1 The while Statement 464
13.3.2 The for Statement 466
13.3.3 The do-while Statement 471

13.4 Problem Solving Using Control
Structures 472
13.4.1 Problem 1: Approximating the

Value of 𝜋 472
13.4.2 Problem 2: Finding Prime Numbers

Less Than 100 474
13.4.3 Problem 3: Analyzing an E-mail

Address 477
13.5 Additional C Control Structures 480

13.5.1 The switch Statement 480
13.5.2 The break and continue

Statements 482
13.5.3 An Example: Simple

Calculator 482
13.6 Summary 484
Exercises 484

14 Functions 491
14.1 Introduction 491
14.2 Functions in C 492

14.2.1 A Function with a Parameter 492
14.2.2 Example: Area of a Ring 495

Contents xi

14.3 Implementing Functions in C 497
14.3.1 Run-Time Stack 497
14.3.2 Getting It All to Work 500
14.3.3 Tying It All Together 505

14.4 Problem Solving Using Functions 507
14.4.1 Problem 1: Case Conversion 507
14.4.2 Problem 2: Pythagorean Triples 508

14.5 Summary 510
Exercises 511

15 Testing and Debugging 517
15.1 Introduction 517
15.2 Types of Errors 518

15.2.1 Syntactic Errors 519
15.2.2 Semantic Errors 519
15.2.3 Algorithmic Errors 521
15.2.4 Specification Errors 522

15.3 Testing 523
15.3.1 Black-Box Testing 524
15.3.2 White-Box Testing 524

15.4 Debugging 525
15.4.1 Ad Hoc Techniques 526
15.4.2 Source-Level Debuggers 526

15.5 Programming for Correctness 528
15.5.1 Nailing Down the Specifications 529
15.5.2 Modular Design 529
15.5.3 Defensive Programming 530

15.6 Summary 531
Exercises 532

16 Pointers and Arrays 537
16.1 Introduction 537
16.2 Pointers 537

16.2.1 Declaring Pointer Variables 539
16.2.2 Pointer Operators 540
16.2.3 Passing a Reference Using

Pointers 541
16.2.4 Null Pointers 543
16.2.5 Demystifying the Syntax 543
16.2.6 An Example Problem Involving

Pointers 544
16.3 Arrays 545

16.3.1 Declaring and Using Arrays 546
16.3.2 Examples Using Arrays 547
16.3.3 Arrays as Parameters 550
16.3.4 Strings in C 552
16.3.5 The Relationship Between Arrays and

Pointers in C 554

16.3.6 Problem Solving: Insertion Sort 556
16.3.7 Common Pitfalls with Arrays in C 559
16.3.8 Variable-Length Arrays 559
16.3.9 Multidimensional Arrays in C 561

16.4 Summary 563
Exercises 563

17 Recursion 569
17.1 Introduction 569
17.2 What Is Recursion? 570
17.3 Recursion vs. Iteration 571
17.4 Towers of Hanoi 572
17.5 Fibonacci Numbers 576
17.6 Binary Search 581
17.7 Escaping a Maze 583
17.8 Summary 586
Exercises 587

18 I/O in C 593
18.1 Introduction 593
18.2 The C Standard Library 593
18.3 I/O, One Character at a Time 594

18.3.1 I/O Streams 594
18.3.2 putchar 595
18.3.3 getchar 595
18.3.4 Buffered I/O 595

18.4 Formatted I/O 597
18.4.1 printf 597
18.4.2 scanf 599
18.4.3 Variable Argument Lists 601

18.5 I/O from Files 602
18.6 Summary 605
Exercises 605

19 Dynamic Data Structures in C 607
19.1 Introduction 607
19.2 Structures 608

19.2.1 typedef 610
19.2.2 Implementing Structures in C 611

19.3 Arrays of Structures 611
19.4 Dynamic Memory Allocation 614

19.4.1 Dynamically Sized Arrays 616
19.5 Linked Lists 618

19.5.1 Support Functions 620
19.5.2 Adding a Node to a Linked List 622
19.5.3 Deleting Node from a Linked List 625
19.5.4 Arrays vs. Linked Lists 626

xii Contents

19.6 Summary 628
Exercises 629

20 Introduction to C++ 633
20.1 Essential C++ 633
20.2 Going from C to C++ 634

20.2.1 Compiling C++ Code 634
20.2.2 Namespaces 636
20.2.3 Input and Output 636
20.2.4 Pass by Reference 637
20.2.5 Function Overloading 638
20.2.6 Dynamic Allocation 639
20.2.7 Compilation to Machine

Version 639
20.3 Classes 639

20.3.1 Methods 640
20.3.2 Access Specifiers 642
20.3.3 Constructors 644
20.3.4 Advanced Topics 645

20.4 Containers and Templates 647
20.4.1 Vectors 647
20.4.2 Templates 649

20.5 Summary 649
Exercises 650

A The LC-3 ISA 653
A.1 Overview 653
A.2 The Instruction Set 655
A.3 Interrupt and Exception Processing 675

A.3.1 Interrupts 676
A.3.2 Exceptions 676

B From LC-3 to x86 679
B.1 LC-3 Features and Corresponding x86

Features 680
B.1.1 Instruction Set 680
B.1.2 Memory 685
B.1.3 Internal State 687

B.2 The Format and Specification of
x86 Instructions 690
B.2.1 Prefix 691
B.2.2 Opcode 691
B.2.3 ModR/M Byte 692
B.2.4 SIB Byte 693
B.2.5 Displacement 693
B.2.6 Immediate 693

B.3 An Example 695

C The Microarchitecture of
the LC-3 699
C.1 Overview 699
C.2 The State Machine 701
C.3 The Data Path 703
C.4 The Control Structure 706
C.5 The TRAP Instruction 710
C.6 Memory-Mapped I/O 711
C.7 Interrupt and Exception Control 712

C.7.1 Initiating an Interrupt 714
C.7.2 Returning from an Interrupt or Trap

Service Routine, RTI 717
C.7.3 Initiating an Exception 717

C.8 Control Store 719

D The C Programming
Language 721
D.1 Overview 721
D.2 C Conventions 721

D.2.1 Source Files 721
D.2.2 Header Files 721
D.2.3 Comments 722
D.2.4 Literals 722
D.2.5 Formatting 724
D.2.6 Keywords 724

D.3 Types 725
D.3.1 Basic Data Types 725
D.3.2 Type Qualifiers 726
D.3.3 Storage Class 728
D.3.4 Derived Types 728
D.3.5 typedef 731

D.4 Declarations 731
D.4.1 Variable Declarations 731
D.4.2 Function Declarations 732

D.5 Operators 733
D.5.1 Assignment Operators 733
D.5.2 Arithmetic Operators 734
D.5.3 Bit-Wise Operators 734
D.5.4 Logical Operators 735
D.5.5 Relational Operators 735
D.5.6 Increment/Decrement Operators 736
D.5.7 Conditional Expression Operators 736
D.5.8 Pointer, Array, and Structure

Operators 737
D.5.9 sizeof 738
D.5.10 Order of Evaluation 738
D.5.11 Type Conversions 739

Contents xiii

D.6 Expressions and Statements 740
D.6.1 Expressions 740
D.6.2 Statements 740

D.7 Control 741
D.7.1 If 741
D.7.2 If-else 741
D.7.3 Switch 742
D.7.4 While 743
D.7.5 For 743
D.7.6 Do-while 744
D.7.7 Break 744
D.7.8 continue 745
D.7.9 return 745

D.8 The C Preprocessor 746
D.8.1 Macro Substitution 746
D.8.2 File Inclusion 747

D.9 Some Standard Library Functions 747
D.9.1 I/O Functions 747
D.9.2 String Functions 749
D.9.3 Math Functions 750
D.9.4 Utility Functions 750

E Useful Tables 753
E.1 Commonly Used Numerical Prefixes 753
E.2 Standard ASCII codes 754
E.3 Powers of 2 755

F Solutions to Selected
Exercises 757

Preface

Finally, the third edition! We must first thank all those who have been pushing

us to produce a third edition. Since the publication of the second edition was so

long ago, clearly the material must be out of date. Wrong! Fundamentals do not

change very often, and our intent continues to be to provide a book that explains

the fundamentals clearly in the belief that if the fundamentals are mastered, there

is no limit to how high one can soar if one’s talent and focus are equal to the task.

We must also apologize that it took so long to produce this revision. Please

know that the delay in no way reflects any lack of enthusiasm on our part. We are

both as passionate about the foundation of computing today as we were 25 years

ago when we overhauled the first course in computing that eventually became

the first edition of this book. Indeed, we have both continued to teach the course

regularly. And, as expected, each time we teach, we develop new insights as to

what to teach, new examples to explain things, and new ways to look at things.

The result of all this, hopefully, is that we have captured this in the third edition.

It is a pleasure to finally be writing this preface. We have received an enor-

mous number of comments from students who have studied the material in the

book and from instructors who have taught from it. It is gratifying to know that

a lot of people agree with our approach, and that this agreement is based on real

firsthand experience learning from it (in the case of students) and watching stu-

dents learn from it (in the case of instructors). The excitement displayed in their

correspondence continues to motivate us.

Why the Book Happened
This textbook evolved from EECS 100, the first computing course for computer

science, computer engineering, and electrical engineering majors at the Univer-

sity of Michigan, Ann Arbor, that Kevin Compton and the first author introduced

for the first time in the fall term, 1995.

EECS 100 happened at Michigan because Computer Science and Engi-

neering faculty had been dissatisfied for many years with the lack of student

comprehension of some very basic concepts. For example, students had a lot

of trouble with pointer variables. Recursion seemed to be “magic,” beyond

understanding.

We decided in 1993 that the conventional wisdom of starting with a high-

level programming language, which was the way we (and most universities) were

xvi Preface

doing it, had its shortcomings. We decided that the reason students were not get-

ting it was that they were forced to memorize technical details when they did not

understand the basic underpinnings.

Our result was the bottom-up approach taken in this book, where we contin-

ually build on what the student already knows, only memorizing when absolutely

necessary. We did not endorse then and we do not endorse now the popular

information hiding approach when it comes to learning. Information hiding is a

useful productivity enhancement technique after one understands what is going on.

But until one gets to that point, we insist that information hiding gets in the way of

understanding. Thus, we continually build on what has gone before so that nothing

is magic and everything can be tied to the foundation that has already been laid.

We should point out that we do not disagree with the notion of top-down

design. On the contrary, we believe strongly that top-down design is correct

design. But there is a clear difference between how one approaches a design prob-

lem (after one understands the underlying building blocks) and what it takes to get

to the point where one does understand the building blocks. In short, we believe

in top-down design, but bottom-up learning for understanding.

Major Changes in the Third Edition
The LC-3

A hallmark of our book continues to be the LC-3 ISA, which is small enough to

be described in a few pages and hopefully mastered in a very short time, yet rich

enough to convey the essence of what an ISA provides. It is the LC “3” because

it took us three tries to get it right. Four tries, actually, but the two changes in the

LC-3 ISA since the second edition (i.e., changes to the LEA instruction and to the

TRAP instruction) are so minor that we decided not to call the slightly modified

ISA the LC-4.

The LEA instruction no longer sets condition codes. It used to set condition

codes on the mistaken belief that since LEA stands for Load Effective Address,

it should set condition codes like LD, LDI, and LDR do. We recognize now that

this reason was silly. LD, LDI, and LDR load a register from memory, and so

the condition codes provide useful information – whether the value loaded is

negative, zero, or positive. LEA loads an address into a register, and for that, the

condition codes do not really provide any value. Legacy code written before this

change should still run correctly.

The TRAP instruction no longer stores the linkage back to the calling pro-

gram in R7. Instead, the PC and PSR are pushed onto the system stack and popped

by the RTI instruction (renamed Return from Trap or Interrupt) as the last instruc-

tion in a trap routine. Trap routines now execute in privileged memory (x0000 to

x2FFF). This change allows trap routines to be re-entrant. It does not affect old

code provided the starting address of the trap service routines, obtained from the

Trap Vector Table, is in privileged memory and the terminating instruction of

each trap service routine is changed from RET to RTI.

As before, Appendix A specifies the LC-3 completely.

Preface xvii

The Addition of C++

We’ve had an ongoing debate about how to extend our approach and textbook

to C++. One of the concerns about C++ is that many of its language features

are too far abstracted from the underlying layers to make for an easy fit to our

approach. Another concern is that C++ is such a vast language that any adequate

coverage would require an additional thousand pages. We also didn’t want to drop

C completely, as it serves as a de facto development language for systems and

hardware-oriented projects.

We adopted an approach where we cover the common core of C and C++

from Chapters 11 through 19. This common core is similar to what was covered

in the second edition, with some minor updates. Chapter 20 serves as a transition,

which we aspired to make very smooth, to the core concepts of C++. With this

approach, we get to explore the evolution between C and C++, which serves as

a key learning opportunity on what changes were essential to boost programmer

productivity.

In particular, we focus on classes in C++ as an evolution from structures in

C. We discuss classes as a compiler construct, how method calls are made, and

the notion of constructors. We touch upon inheritance, too, but leave the details

for subsequent treatment in follow-on courses.

An important element of C++ is the introduction of container classes in the

Standard Template Library, which is a heavily utilized part of the C++ language.

This provides an opportunity to dive deep into the vector class, which serves as

a continuation of a running example in the second half around the support for

variable-sized arrays in high-level languages, or in particular, C’s lack of support

for them.

Other Important Updates

Although no chapter in the book has remained untouched, some chapters have

been changed more than others. In Chapter 2, we expanded the coverage of the

floating point data type and the conversion of fractions between decimal and

binary numbers in response to several instructors who wanted them. We moved

DeMorgan’s Laws from Chapter 3 to Chapter 2 because the concept is really about

AND and OR functions and not about digital logic implementation. In Chap-

ter 3, we completely overhauled the description of state, latches, flip-flops, finite

state machines, and our example of a danger sign. We felt the explanations in the

second edition were not as clear as they needed to be, and the concepts are too

important to not get right. We revised Chapter 4 to better introduce the LC-3,

including a different set of instructions, leading to our first complete example of

a computer program.

Our organization of Chapters 8, 9, and 10 was completely overhauled in order

to present essentially the same material in a more understandable way. Although

most of our treatment of data structures waits until we have introduced C in the

second half of the book, we felt it was important to introduce stacks, queues,

and character strings as soon as the students have moved out of programming in

machine language so they can write programs dealing with these data structures

xviii Preface

and see how these structures are actually organized in memory. We moved our dis-

cussion of subroutines up to Chapter 8 because of their importance in constructing

richer programs.

We also introduced recursion in Chapter 8, although its main treatment is still

left for the second half of the book. Both the expressive power of recursion and

its misuse are so common in undergraduate curricula that we felt dealing with

it twice, first while they are engrossed in the bowels of assembly language and

again after moving up to the richness of C, was worthwhile.

Chapter 9 now covers all aspects of I/O in one place, including polling and

interrupt-driven I/O. Although the concept of privilege is present in the second

edition, we have put greater emphasis on it in the third edition. Our coverage

of system calls (the trap routines invoked by the TRAP instruction) appears in

Chapter 9. All of the above reduce Chapter 10 to simply a comprehensive example

that pulls together a lot of the first half of the book: the simulation of a calculator.

Doing so requires 12 subroutines that are laid out in complete detail. Two con-

cepts that are needed to make this happen are stack arithmetic and ASCII/binary

conversion, so they are included in Chapter 10.

We reworked all the examples in Chapters 11 through 19 to use the latest

ANSI Standard C or C18. We also added more coding examples to further empha-

size points and to provide clarity on complex topics such as pointers, arrays,

recursion, and pointers to pointers in C. In Chapter 16, we added additional

sections on variable-sized arrays in C, and on multidimensional arrays.

Chapter Organization
The book breaks down into two major segments, (a) the underlying structure

of a computer, as manifested in the LC-3; and (b) programming in a high-level

language, in our case C and C++.

The LC-3

We start with the underpinnings that are needed to understand the workings of a

real computer. Chapter 2 introduces the bit and arithmetic and logical operations

on bits. Then we begin to build the structure needed to understand the LC-3.

Chapter 3 takes the student from an MOS transistor, step by step, to a “real”

memory and a finite state machine.

Our real memory consists of four words of three bits each, rather than

16 gigabytes, which is common in most laptops today. Its description fits on a

single page (Figure 3.20), making it easy for a student to grasp. By the time stu-

dents get there, they have been exposed to all the elements needed to construct the

memory. The finite state machine is needed to understand how a computer pro-

cesses instructions, starting in Chapter 4. Chapter 4 introduces the von Neumann

execution model and enough LC-3 instructions to allow an LC-3 program to be

written. Chapter 5 introduces most of the rest of the LC-3 ISA.

Preface xix

The LC-3 is a 16-bit architecture that includes physical I/O via keyboard

and monitor, TRAPs to the operating system for handling service calls, con-

ditional branches on (N, Z, and P) condition codes, a subroutine call/return

mechanism, a minimal set of operate instructions (ADD, AND, and NOT), and

various addressing modes for loads and stores (direct, indirect, Base+offset).

Chapter 6 is devoted to programming methodology (stepwise refinement)

and debugging, and Chapter 7 is an introduction to assembly language program-

ming. We have developed a simulator and an assembler for the LC-3 that runs on

Windows, Linux, and Mac0S platforms. It can be downloaded from the web at

no charge.

Students use the simulator to test and debug programs written in LC-3

machine language and in LC-3 assembly language. The simulator allows online

debugging (deposit, examine, single-step, set breakpoint, and so on). The sim-

ulator can be used for simple LC-3 machine language and assembly language

programming assignments, which are essential for students to master the concepts

presented throughout the first ten chapters.

Assembly language is taught, but not to train expert assembly language pro-

grammers. Indeed, if the purpose was to train assembly language programmers,

the material would be presented in an upper-level course, not in an introductory

course for freshmen. Rather, the material is presented in Chapter 7 because it

is consistent with the paradigm of the book. In our bottom-up approach, by the

time the student reaches Chapter 7, he/she can handle the process of transform-

ing assembly language programs to sequences of 0s and 1s. We go through the

process of assembly step by step for a very simple LC-3 Assembler. By hand

assembling, the student (at a very small additional cost in time) reinforces the

important fundamental concept of translation.

It is also the case that assembly language provides a user-friendly notation

to describe machine instructions, something that is particularly useful for writing

programs in Chapters 8, 9, and 10, and for providing many of the explanations in

the second half of the book. Starting in Chapter 11, when we teach the semantics

of C statements, it is far easier for the reader to deal with ADD R1, R2, R3 than

to have to struggle with 0001001010000011.

Chapter 8 introduces three important data structures: the stack, the queue,

and the character string, and shows how they are stored in memory. The sub-

routine call/return mechanism of the LC-3 is presented because of its usefulness

both in manipulating these data structures and in writing programs. We also intro-

duce recursion, a powerful construct that we revisit much more thoroughly in the

second half of the book (in Chapter 17), after the student has acquired a much

stronger capability in high-level language programming. We introduce recursion

here to show by means of a few examples the execution-time tradeoffs incurred

with recursion as a first step in understanding when its use makes sense and when

it doesn’t.

Chapter 9 deals with input/output and some basic interaction between the

processor and the operating system. We introduce the notions of priority and

privilege, which are central to a systems environment. Our treatment of I/O is

all physical, using keyboard data and status registers for input and display data

and status registers for output. We describe both interrupt-driven I/O and I/O

xx Preface

under program control. Both are supported by our LC-3 simulator so the student

can write interrupt drivers. Finally, we show the actual LC-3 code of the trap ser-

vice routines that the student has invoked with the TRAP instruction starting in

Chapter 4. To handle interrupt-driven I/O and trap service routines, we complete

the description of the LC-3 ISA with details of the operation of the Return from

Trap or Interrupt (RTI) and TRAP instructions.

The first half of the book concludes with Chapter 10, a comprehensive exam-

ple of a simple calculator that pulls together a lot of what the students have learned

in Chapters 1 through 9.

Programming in C and C++

By the time the student gets to the second part of the textbook, he/she has an

understanding of the layers below. In our coverage of programming in C and

C++, we leverage this foundation by showing the resulting LC-3 code generated

by a compiler with each new concept in C/C++.

We start with the C language because it provides the common, essential

core with C++. The C programming language fits very nicely with our bottom-

up approach. Its low-level nature allows students to see clearly the connection

between software and the underlying hardware. In this book, we focus on basic

concepts such as control structures, functions, and arrays. Once basic program-

ming concepts are mastered, it is a short step for students to learn more advanced

concepts such as objects and abstraction in C++.

Each time a new high-level construct is introduced, the student is shown

the LC-3 code that a compiler would produce. We cover the basic constructs of

C (variables, operators, control, and functions), pointers, arrays, recursion, I/O,

complex data structures, and dynamic allocation. With C++, we cover some basic

improvements over C, classes, and containers.

Chapter 11 is a gentle introduction to high-level programming languages. At

this point, students have dealt heavily with assembly language and can understand

the motivation behind what high-level programming languages provide. Chapter

11 also contains a simple C program, which we use to kick-start the process of

learning C.

Chapter 12 deals with values, variables, constants, and operators. Chapter 13

introduces C control structures. We provide many complete program examples

to give students a sample of how each of these concepts is used in practice. LC-3

code is used to demonstrate how each C construct affects the machine at the lower

levels.

Chapter 14 introduces functions in C. Students are not merely exposed to the

syntax of functions. Rather they learn how functions are actually executed, with

argument-passing using a run-time stack. A number of examples are provided.

In Chapter 15, students are exposed to techniques for testing their code, along

with debugging high-level source code. The ideas of white-box and black-box

testing are discussed.

Chapter 16 teaches pointers and arrays, relying heavily on the student’s

understanding of how memory is organized. We discuss C’s notions of fixed size

and variable-length arrays, along with multidimensional array allocation.

Preface xxi

Chapter 17 teaches recursion, using the student’s newly gained knowledge of

functions, stack frames, and the run-time stack. Chapter 18 introduces the details

of I/O functions in C, in particular, streams, variable length argument lists, and

how C I/O is affected by the various format specifications. This chapter relies on

the student’s earlier exposure to physical I/O in Chapter 8. Chapter 19 discusses

structures in C, dynamic memory allocation, and linked lists.

Chapter 20 provides a jump-start on C++ programming by discussing its

roots in C and introducing the idea of classes as a natural evolution from struc-

tures. We also cover the idea of containers in the standard template library, to

enable students to quickly jump into productive programming with C++.

Along the way, we have tried to emphasize good programming style and cod-

ing methodology by means of examples. Novice programmers probably learn at

least as much from the programming examples they read as from the rules they

are forced to study. Insights that accompany these examples are highlighted by

means of lightbulb icons that are included in the margins.

We have found that the concept of pointer variables (Chapter 16) is not at all

a problem. By the time students encounter it, they have a good understanding of

what memory is all about, since they have analyzed the logic design of a small

memory (Chapter 3). They know the difference, for example, between a memory

location’s address and the data stored there.

Recursion ceases to be magic since, by the time a student gets to that point

(Chapter 17), he/she has already encountered all the underpinnings. Students

understand how stacks work at the machine level (Chapter 8), and they understand

the call/return mechanism from their LC-3 machine language programming expe-

rience, and the need for linkages between a called program and the return to the

caller (Chapter 8). From this foundation, it is not a large step to explain functions

by introducing run-time stack frames (Chapter 14), with a lot of the mystery about

argument passing, dynamic declarations, and so on, going away. Since a function

can call a function, it is one additional small step (certainly no magic involved)

for a function to call itself.

The Simulator/Debugger
The importance of the Simulator/Debugger for testing the programs a student

writes cannot be overemphasized. We believe strongly that there is no substi-

tute for hands-on practice testing one’s knowledge. It is incredibly fulfilling

to a student’s education to write a program that does not work, testing it to

find out why it does not work, fixing the bugs himself/herself, and then see-

ing the program run correctly. To that end, the Simulator/Debugger has been

completely rewritten. It runs on Windows, Linux, and MacOS while present-

ing the same user interface (GUI) regardless of which platform the student is

using. We have improved our incorporation of interrupt-driven I/O into the Sim-

ulator’s functionality so students can easily write interrupt drivers and invoke

them by interrupting a lower priority executing program. ...in their first course in

computing!

xxii Preface

Alternate Uses of the Book
We wrote the book as a textbook for a freshman introduction to computing. We

strongly believe that our motivated bottom-up approach is the best way for stu-

dents to learn the fundamentals of computing. We have seen lots of evidence

showing that in general, students who understand the fundamentals of how the

computer works are better able to grasp the stuff that they encounter later, includ-

ing the high-level programming languages that they must work in, and that they

can learn the rules of these programming languages with far less memorizing

because everything makes sense. For us, the best use of the book is a one-semester

freshman course for particularly motivated students, or a two-semester sequence

where the pace is tempered.

Having said that, we recognize that others see the curriculum differently.

Thus, we hasten to add that the book can certainly be used effectively in other

ways. In fact, each of the following has been tried, and all have been used

successfully:

Two Quarters, Freshman Course
An excellent use of the book. No prerequisites, the entire book can be covered

easily in two quarters, the first quarter for Chapters 1–10, the second quarter for

Chapters 11–20. The pace is brisk, but the entire book can be covered easily in

two academic quarters.

One-Semester, Second Course
Several schools have successfully used the book in their second course,

after the students have been exposed to programming with an object-oriented

programming language in a milder first course. The rationale is that after expo-

sure to high-level language programming in the first course, the second course

should treat at an introductory level digital logic, basic computer organization,

and assembly language programming. The first two-thirds of the semester is spent

on Chapters 1–10, and the last third on Chapters 11–20, teaching C programming,

but also showing how some of the magic from the students’ first course can be

implemented. Coverage of functions, activation records, recursion, pointer vari-

ables, and data structures are examples of topics where getting past the magic is

particularly useful. The second half of the book can move more quickly since the

student has already taken an introductory programming course. This model also

allows students who were introduced to programming with an object-oriented

language to pick up C, which they will almost certainly need in some of their

advanced software courses.

A Sophomore-Level Computer Organization Course
The book has been used to delve deeply into computer implementation in

the sophomore year. The semester is spent in Chapters 1 through 10, often

culminating in a thorough study of Appendix C, which provides the complete

microarchitecture of a microprogrammed LC-3. We note, however, that some

very important ideas in computer architecture are not covered in the book, most

notably cache memory, pipelining, and virtual memory. Instructors using the

book this way are encouraged to provide extra handouts dealing with those top-

ics. We agree that they are very important to the student’s computer architecture

Preface xxiii

education, but we feel they are better suited to a later course in computer

architecture and design. This book is not intended for that purpose.

Why LC-3, and Not ARM or RISCV?
We have been asked why we invented the LC-3 ISA, rather than going with ARM,

which seems to be the ISA of choice for most mobile devices, or RISCV, which

has attracted substantial interest over the last few years.

There are many reasons. First, we knew that the ISA we selected would

be the student’s first ISA, not his/her last ISA. Between the freshman year and

graduation, the student is likely to encounter several ISAs, most of which are in

commercial products: ARM, RISCV, x86, and POWER, to name a few.

But all the commercial ISAs have details that have no place in an introductory

course but still have to be understood for the student to use them effectively. We

could, of course, have subset an existing ISA, but that always ends up in questions

of what to take out and what to leave in with a result that is not as clean as one

would think at first blush. Certainly not as clean as what one can get when starting

from scratch. It also creates an issue whenever the student uses an instruction in

an exam or on an assignment that is not in the subset. Not very clean from a

pedagogical sense.

We wanted an ISA that was clean with no special cases to deal with, with as

few opcodes as necessary so the student could spend almost all his/her time on

the fundamental concepts in the course and very little time on the nuances of the

instruction set. The formats of all instructions in the LC-3 fit on a single page.

Appendix A provides all the details (i.e., the complete data sheet) of the entire

LC-3 ISA in 25 pages.

We also wanted an instruction set that in addition to containing only a few

instructions was very rich in the breadth of what it embraced. So, we came up

with the LC-3, an instruction set with only 15 four-bit opcodes, a small enough

number that students can absorb the ISA without even trying. For arithmetic, we

have only ADD instead of ADD, SUB, MUL, and DIV. For logical operations,

we have AND and NOT, foregoing OR, XOR, etc. We have no shift or rotate

instructions. In all these cases, the missing opcodes can be implemented with

procedures using the few opcodes that the LC-3 provides. We have loads and

stores with three different addressing modes, each addressing mode useful for a

different purpose. We have conditional branches, subroutine calls, return from

trap or interrupt, and system calls (the TRAP instruction).

In fact, this sparse set of opcodes is a feature! It drives home the need for

creating more complex functionality out of simple operations, and the need for

abstraction, both of which are core concepts in the book.

Most importantly, we have found from discussions with hundreds of students

that starting with the LC-3 does not put them at a disadvantage in later courses.

On the contrary: For example, at one campus students were introduced to ARM in

the follow-on course, while at another campus, students were introduced to x86.

xxiv Preface

In both cases, students appreciated starting with the LC-3, and their subsequent

introduction to ARM or x86 was much easier as a result of their first learning the

fundamental concepts with the LC-3.

A Few Observations
Having now taught the course more than 20 times between us, we note the

following:

Understanding, Not Memorizing

Since the course builds from the bottom up, we have found that less memorization

of seemingly arbitrary rules is required than in traditional programming courses.

Students understand that the rules make sense since by the time a topic is taught,

they have an awareness of how that topic is implemented at the levels below

it. This approach is good preparation for later courses in design, where under-

standing of and insights gained from fundamental underpinnings are essential to

making the required design tradeoffs.

The Student Debugs the Student’s Program

We hear complaints from industry all the time about CS graduates not being able

to program. Part of the problem is the helpful teaching assistant, who contributes

far too much of the intellectual content of the student’s program so the student

never has to really master the art. Our approach is to push the student to do the

job without the teaching assistant (TA). Part of this comes from the bottom-up

approach, where memorizing is minimized and the student builds on what he/she

already knows. Part of this is the simulator, which the student uses from the day

he/she writes his/her first program. The student is taught debugging from his/her

first program and is required from the very beginning to use the debugging tools

of the simulator to get his/her programs to work. The combination of the simulator

and the order in which the subject material is taught results in students actually

debugging their own programs instead of taking their programs to the TA for

help ... with the too-frequent result that the TAs end up writing the programs for

the students.

Preparation for the Future: Cutting Through Protective Layers

Professionals who use computers in systems today but remain ignorant of what

is going on underneath are likely to discover the hard way that the effectiveness

of their solutions is impacted adversely by things other than the actual programs

they write. This is true for the sophisticated computer programmer as well as the

sophisticated engineer.

Serious programmers will write more efficient code if they understand what

is going on beyond the statements in their high-level language. Engineers, and not

just computer engineers, are having to interact with their computer systems today

Preface xxv

more and more at the device or pin level. In systems where the computer is being

used to sample data from some metering device such as a weather meter or feed-

back control system, the engineer needs to know more than just how to program

in MATLAB. This is true of mechanical, chemical, and aeronautical engineers

today, not just electrical engineers. Consequently, the high-level programming

language course, where the compiler protects the student from everything “ugly”

underneath, does not serve most engineering students well, and it certainly does

not prepare them for the future.

Rippling Effects Through the Curriculum

The material of this text clearly has a rippling effect on what can be taught in

subsequent courses. Subsequent programming courses can not only assume the

students know the syntax of C/C++ but also understand how it relates to the

underlying architecture. Consequently, the focus can be on problem solving and

more sophisticated data structures. On the hardware side, a similar effect is seen

in courses in digital logic design and in computer organization. Students start the

logic design course with an appreciation of what the logic circuits they master are

good for. In the computer organization course, the starting point is much further

along than when students are seeing the term Program Counter for the first time.

Faculty members who have taught the follow-on courses have noticed substan-

tial improvement in students’ comprehension compared to what they saw before

students took our course.

Acknowledgments
It’s been 15 years since the second edition came out, and about 20 years since we

first put together a course pack of notes that eventually morphed into the first edi-

tion. Through those years, a good number of people have jumped in, volunteered

help, adopted the book, read through drafts, suggested improvements, and so on.

We could easily fill many pages if we listed all their names. We are indebted to

each of them, and we deeply appreciate their contributions.

Still, there are some folks we feel compelled to acknowledge here, and we

apologize to all those who have helped immeasurably, but are not mentioned here

due to space limitations.

First, Professor Kevin Compton. Kevin believed in the concept of the book

since it was first introduced at a curriculum committee meeting that he chaired at

Michigan in 1993. Kevin co-taught the course at Michigan the first four times it

was offered, in 1995–1997. His insights into programming methodology (inde-

pendent of the syntax of the particular language) provided a sound foundation for

the beginning student. The course at Michigan and this book would be a lot less

were it not for Kevin’s influence.

Several colleagues and students were our major go-to guys when it came

to advice, and insights, on the current version of the book and its future.

Wen-mei Hwu, Veynu Narasiman, Steve Lumetta, Matt Frank, Faruk Guvinilir,

xxvi Preface

Chirag Sakuja, Siavash Zanganeh, Stephen Pruett, Jim Goodman, and Soner

Onder have been particularly important to us since the second edition.

McGraw-Hill has been an important partner in this undertaking, starting with

Betsy Jones, our first editor. We sent the manuscript of our first edition to several

publishers and were delighted with the many positive responses. Nonetheless, one

editor stood out. Betsy immediately checked us out, and once she was satisfied,

she became a strong believer in what we were trying to accomplish. Throughout

the process of the first two editions, her commitment and energy, as well as that

of Michelle Flomenhoft, our first development editor, were greatly appreciated.

Fifteen years is a long time between editions, and with it have come a whole new

collection of folks from McGraw-Hill that we have recently been privileged to

work with, especially Dr. Thomas Scaife, Suzy Bainbridge, Heather Ervolino,

and Jeni McAtee.

Our book has benefited from extensive comments by faculty members from

many universities. Some were in formal reviews of the manuscript, others in

e-mails or conversations at technical conferences. We gratefully acknowledge

input from Professors Jim Goodman, Wisconsin and Aukland; Soner Onder,

Michigan Tech; Vijay Pai, Purdue; Richard Johnson, Western New Mexico; Tore

Larsen, Tromso; Greg Byrd, NC State; Walid Najjar, UC Riverside; Sean Joyce,

Heidelberg College; James Boettler, South Carolina State; Steven Zeltmann,

Arkansas; Mike McGregor, Alberta; David Lilja, Minnesota; Eric Thompson,

Colorado, Denver; Brad Hutchings, Brigham Young; Carl D. Crane III, Florida;

Nat Davis, Virginia Tech; Renee Elio, University of Alberta; Kelly Flangan,

BYU; George Friedman, UIUC; Franco Fummi, Universita di Verona; Dale

Grit, Colorado State; Thor Guisrud, Stavanger College; Dave Kaeli, North-

eastern; Rasool Kenarangui, UT, Arlington; Joel Kraft, Case Western Reserve;

Wei-Ming Lin, UT, San Antonio; Roderick Loss, Montgomery College; Ron

Meleshko, Grant MacEwan Community College; Andreas Moshovos, Toronto;

Tom Murphy, The Citadel; Murali Narayanan, Kansas State; Carla Purdy, Cincin-

nati; T. N. Rajashekhara, Camden County College; Nello Scarabottolo, Universita

degli Studi di Milano; Robert Schaefer, Daniel Webster College; Tage Stabell-

Kuloe, University of Tromsoe; Jean-Pierre Steger, Burgdorf School of Engi-

neering; Bill Sverdlik, Eastern Michigan; John Trono, St. Michael’s College;

Murali Varansi, University of South Florida; Montanez Wade, Tennessee State;

Carl Wick, US Naval Academy; Robert Crisp, Arkansas; Allen Tannenbaum,

Georgia Tech; Nickolas Jovanovic, Arkansas–Little Rock; Dean Brock, North

Carolina–Asheville; Amar Raheja, Cal State–Pomona; Dayton Clark, Brooklyn

College; William Yurcik, Illinois State; Jose Delgado-Frias, Washington State;

Peter Drexel, Plymouth State; Mahmoud Manzoul, Jackson State; Dan Con-

nors, Colorado; Massoud Ghyam, USC; John Gray, UMass–Dartmouth; John

Hamilton, Auburn; Alan Rosenthal, Toronto; and Ron Taylor, Wright State.

We have continually been blessed with enthusiastic, knowledgeable, and car-

ing TAs who regularly challenge us and provide useful insights into helping us

explain things better. Again, the list is too long – more than 100 at this point.

Almost all were very good; still, we want to mention a few who were particularly

helpful. Stephen Pruett, Siavash Zangeneh, Meiling Tang, Ali Fakhrzadehgan,

Sabee Grewal, William Hoenig, Matthew Normyle, Ben Lin, Ameya Chaudhari,

Preface xxvii

Nikhil Garg, Lauren Guckert, Jack Koenig, Saijel Mokashi, Sruti Nuthalapati,

Faruk Guvenilir, Milad Hashemi, Aater Suleman, Chang Joo Lee, Bhargavi

Narayanasetty, RJ Harden, Veynu Narasiman, Eiman Ebrahimi, Khubaib, Allison

Korczynski, Pratyusha Nidamaluri, Christopher Wiley, Cameron Davison, Lisa

de la Fuente, Phillip Duran, Jose Joao, Rustam Miftakhutdinov, Nady Obeid,

Linda Bigelow, Jeremy Carillo, Aamir Hasan, Basit Sheik, Erik Johnson, Tsung-

Wei Huang, Matthew Potok, Chun-Xun Lin, Jianxiong Gao, Danny Kim, and

Iou-Jen Liu.

Several former students, former colleagues, and friends reviewed chapters in

the book. We particularly wish to thank Rich Belgard, Alba Cristina de Melo,

Chirag Sakhuja, Sabee Grewal, Pradip Bose, and Carlos Villavieja for their

help doing this. Their insights have made a much more readable version of the

material.

We have been delighted by the enthusiastic response of our colleagues at

both The University of Texas at Austin and the University of Illinois, Urbana-

Champaign, who have taught from the book and shared their insights with us:

Derek Chiou, Jacob Abraham, Ramesh Yerraballi, Nina Telang, and Aater Sule-

man at Texas, and Yuting Chen, Sayan Mitra, Volodymyr Kindratenko, Yih-Chun

Hu, Seth Hutchinson, Steve Lumetta, Juan Jaramillo, Pratik Lahiri, and Wen-mei

Hwu at Illinois. Thank you.

Also, there are those who have contributed in many different and often unique

ways. Space dictates that we leave out the detail and simply list them and say

thank you. Amanda, Bryan, and Carissa Hwu, Mateo Valero, Rich Belgard, Aman

Aulakh, Minh Do, Milena Milenkovic, Steve Lumetta, Brian Evans, Jon Valvano,

Susan Kornfield, Ed DeFranco, Evan Gsell, Tom Conte, Dave Nagle, Bruce

Shriver, Bill Sayle, Dharma Agarwal, David Lilja, Michelle Chapman.

Finally, if you will indulge the first author a bit: This book is about developing

a strong foundation in the fundamentals with the fervent belief that once that is

accomplished, students can go as far as their talent and energy can take them.

This objective was instilled in me by the professor who taught me how to be a

professor, Professor William K. Linvill. It has been more than 50 years since I

was in his classroom, but I still treasure the example he set.

A Final Word
We are hopeful that you will enjoy teaching or studying from this third edition of

our book. However, as we said in the prefaces to both previous editions, we are

mindful that the current version of the book will always be a work in progress,

and both of us welcome your comments on any aspect of it. You can reach us by

email at patt@ece.utexas.edu and sjp@illinois.edu. We hope you will.

Yale N. Patt
Sanjay J. Patel

September, 2019

1
CHAPTER

Welcome Aboard

1.1 What We Will Try to Do
Welcome to From Bits and Gates to C and Beyond. Our intent is to introduce

you over the next xxx pages to the world of computing. As we do so, we have

one objective above all others: to show you very clearly that there is no magic to

computing. The computer is a deterministic system—every time we hit it over the

head in the same way and in the same place (provided, of course, it was in the same

starting condition), we get the same response. The computer is not an electronic

genius; on the contrary, if anything, it is an electronic idiot, doing exactly what

we tell it to do. It has no mind of its own.

What appears to be a very complex organism is really just a very large, sys-

tematically interconnected collection of very simple parts. Our job throughout

this book is to introduce you to those very simple parts and, step-by-step, build the

interconnected structure that you know by the name computer. Like a house, we

will start at the bottom, construct the foundation first, and then go on to add layer

after layer, as we get closer and closer to what most people know as a full-blown

computer. Each time we add a layer, we will explain what we are doing, tying the

new ideas to the underlying fabric. Our goal is that when we are done, you will be

able to write programs in a computer language such as C using the sophisticated

features of that language and to understand what is going on underneath, inside

the computer.

1.2 How We Will Get There
We will start (in Chapter 2) by first showing that any information processed by

the computer is represented by a sequence of 0s and 1s. That is, we will encode

all information as sequences of 0s and 1s. For example, one encoding of the letter

a that is commonly used is the sequence 01100001. One encoding of the decimal

number 35 is the sequence 00100011. We will see how to perform operations on

such encoded information.

2 chapter 1 Welcome Aboard

Once we are comfortable with information represented as codes made up of

0s and 1s and operations (addition, for example) being performed on these repre-

sentations, we will begin the process of showing how a computer works. Starting

in Chapter 3, we will note that the computer is a piece of electronic equipment

and, as such, consists of electronic parts operated by voltages and interconnected

by wires. Every wire in the computer, at every moment in time, is at either a high

voltage or a low voltage. For our representation of 0s and 1s, we do not specify

exactly how high. We only care whether there is or is not a large enough voltage

relative to 0 volts to identify it as a 1. That is, the absence or presence of a rea-

sonable voltage relative to 0 volts is what determines whether it represents the

value 0 or the value 1.

In Chapter 3, we will see how the transistors that make up today’s micro-

processor (the heart of the modern computer) work. We will further see how

those transistors are combined into larger structures that perform operations,

such as addition, and into structures that allow us to save information for later

use. In Chapter 4, we will combine these larger structures into the von Neumann

machine, a basic model that describes how a computer works. We will also begin

to study a simple computer, the LC-3. We will continue our study of the LC-3 in

Chapter 5. LC-3 stands for Little Computer 3. We actually started with LC-1 but

needed two more shots at it before (we think) we got it right! The LC-3 has all

the important characteristics of the microprocessors that you may have already

heard of, for example, the Intel 8088, which was used in the first IBM PCs back

in 1981. Or the Motorola 68000, which was used in the Macintosh, vintage 1984.

Or the Pentium IV, one of the high-performance microprocessors of choice for

the PC in the year 2003. Or today’s laptop and desktop microprocessors, the Intel

Core processors – I3, I5, and I7. Or even the ARM microprocessors that are used

in most smartphones today. That is, the LC-3 has all the important characteristics

of these “real” microprocessors without being so complicated that it gets in the

way of your understanding.

Once we understand how the LC-3 works, the next step is to program it, first

in its own language (Chapter 5 and Chapter 6), and then in a language called

assembly language that is a little bit easier for humans to work with (Chap-

ter 7). Chapter 8 introduces representations of information more complex than a

simple number – stacks, queues, and character strings, and shows how to imple-

ment them. Chapter 9 deals with the problem of getting information into (input)

and out of (output) the LC-3. Chapter 9 also deals with services provided to a

computer user by the operating system. We conclude the first half of the book

(Chapter 10) with an extensive example, the simulation of a calculator, an app on

most smartphones today.

In the second half of the book (Chapters 11–20), we turn our attention

to high-level programming concepts, which we introduce via the C and C++

programming languages. High-level languages enable programmers to more

effectively develop complex software by abstracting away the details of the under-

lying hardware. C and C++ in particular offer a rich set of programmer-friendly

constructs, but they are close enough to the hardware that we can examine

how code is transformed to execute on the layers below. Our goal is to enable

you to write short, simple programs using the core parts of these programming

1.3 Two Recurring Themes 3

languages, all the while being able to comprehend the transformations required

for your code to execute on the underlying hardware.

We’ll start with basic topics in C such as variables and operators (Chapter 12),

control structures (Chapter 13), and functions (Chapter 14). We’ll see that these are

straightforward extensions of concepts introduced in the first half of the textbook.

We then move on to programming concepts in Chapters 15–19 that will enable

us to create more powerful pieces of code: Testing and Debugging (Chapter 15),

Pointers and Arrays in C (Chapter 16), Recursion (Chapter 17), Input and Output in

C (Chapter 18), and Data Structures in C (Chapter 19).

Chapters 20 is devoted to C++, which we present as an evolution of the

C programming language. Because the C++ language was initially defined as

a superset of C, many of the concepts covered in Chapters 11–19 directly map

onto the C++ language. We will introduce some of the core notions in C++ that

have helped establish C++ as one of the most popular languages for developing

real-world software. Chapter 20 is our Introduction to C++.

In almost all cases, we try to tie high-level C and C++ constructs to the

underlying LC-3 so that you will understand what you demand of the computer

when you use a particular construct in a C or C++ program.

1.3 Two Recurring Themes
Two themes permeate this book that we as professors previously took for granted,

assuming that everyone recognized their value and regularly emphasized them

to students of engineering and computer science. However, it has become clear

to us that from the git-go, we need to make these points explicit. So, we state

them here up front. The two themes are (a) the notion of abstraction and (b) the

importance of not separating in your mind the notions of hardware and software.

Their value to your development as an effective engineer or computer scien-

tist goes well beyond your understanding of how a computer works and how to

program it.

The notion of abstraction is central to all that you will learn and expect to

use in practicing your craft, whether it be in mathematics, physics, any aspect of

engineering, or business. It is hard to think of any body of knowledge where the

notion of abstraction is not critical.

The misguided hardware/software separation is directly related to your

continuing study of computers and your work with them.

We will discuss each in turn.

1.3.1 The Notion of Abstraction

The use of abstraction is all around us. When we get in a taxi and tell the driver,

“Take me to the airport,” we are using abstraction. If we had to, we could probably

direct the driver each step of the way: “Go down this street ten blocks, and make

a left turn.” And, when the driver got there, “Now take this street five blocks and

make a right turn.” And on and on. You know the details, but it is a lot quicker to

just tell the driver to take you to the airport.

4 chapter 1 Welcome Aboard

Even the statement “Go down this street ten blocks…” can be broken down

further with instructions on using the accelerator, the steering wheel, watching

out for other vehicles, pedestrians, etc.

Abstraction is a technique for establishing a simpler way for a person to inter-

act with a system, removing the details that are unnecessary for the person to

interact effectively with that system. Our ability to abstract is very much a pro-

ductivity enhancer. It allows us to deal with a situation at a higher level, focusing

on the essential aspects, while keeping the component ideas in the background.

It allows us to be more efficient in our use of time and brain activity. It allows us

to not get bogged down in the detail when everything about the detail is working

just fine.

There is an underlying assumption to this, however: when everything about
the detail is just fine. What if everything about the detail is not just fine? Then,

to be successful, our ability to abstract must be combined with our ability to

un-abstract. Some people use the word deconstruct—the ability to go from the

abstraction back to its component parts.

Two stories come to mind.

The first involves a trip through Arizona the first author made a long time

ago in the hottest part of the summer. At the time he was living in Palo Alto,

California, where the temperature tends to be mild almost always. He knew

enough to take the car to a mechanic before making the trip and tell him to check

the cooling system. That was the abstraction: cooling system. What he had not

mastered was that the capability of a cooling system for Palo Alto, California,

is not the same as the capability of a cooling system for the summer deserts of

Arizona. The result: two days in Deer Lodge, Arizona (population 3), waiting for

a head gasket to be shipped in.

The second story (perhaps apocryphal) is supposed to have happened during

the infancy of electric power generation. General Electric Co. was having trouble

with one of its huge electric power generators and did not know what to do. On

the front of the generator were lots of dials containing lots of information, and

lots of screws that could be rotated clockwise or counterclockwise as the operator

wished. Something on the other side of the wall of dials and screws was malfunc-

tioning and no one knew what to do. As the story goes, they called in one of the

early giants in the electric power industry. He looked at the dials and listened to

the noises for a minute, then took a small screwdriver from his pocket and rotated

one screw 35 degrees counterclockwise. The problem immediately went away. He

submitted a bill for $1000 (a lot of money in those days) without any elaboration.

The controller found the bill for two minutes’ work a little unsettling and asked

for further clarification. Back came the new bill:

Turning a screw 35 degrees counterclockwise: $ 0.75
Knowing which screw to turn and by how much: 999.25

In both stories the message is the same. It is more efficient to think of entities

as abstractions. One does not want to get bogged down in details unnecessarily.

And as long as nothing untoward happens, we are OK. If there had been no trip

to Arizona, the abstraction “cooling system” would have been sufficient. If the

1.3 Two Recurring Themes 5

electric power generator never malfunctioned, there would have been no need for

the power engineering guru’s deeper understanding.

As we will see, modern computers are composed of transistors. These tran-

sistors are combined to form logic “gates”—an abstraction that lets us think in

terms of 0s and 1s instead of the varying voltages on the transistors. A logic cir-

cuit is a further abstraction of a combination of gates. When one designs a logic

circuit out of gates, it is much more efficient to not have to think about the inter-

nals of each gate. To do so would slow down the process of designing the logic

circuit. One wants to think of the gate as a component. But if there is a problem

with getting the logic circuit to work, it is often helpful to look at the internal

structure of the gate and see if something about its functioning is causing the

problem.

When one designs a sophisticated computer application program, whether it

be a new spreadsheet program, word processing system, or computer game, one

wants to think of each of the components one is using as an abstraction. If one

spent time thinking about the details of each component when it was not neces-

sary, the distraction could easily prevent the total job from ever getting finished.

But when there is a problem putting the components together, it is often useful to

examine carefully the details of each component in order to uncover the problem.

The ability to abstract is the most important skill. In our view, one should

try to keep the level of abstraction as high as possible, consistent with getting

everything to work effectively. Our approach in this book is to continually raise

the level of abstraction. We describe logic gates in terms of transistors. Once we

understand the abstraction of gates, we no longer think in terms of transistors.

Then we build larger structures out of gates. Once we understand these larger

abstractions, we no longer think in terms of gates.

The Bottom Line Abstractions allow us to be much more efficient in dealing

with all kinds of situations. It is also true that one can be effective without under-

standing what is below the abstraction as long as everything behaves nicely. So,

one should not pooh-pooh the notion of abstraction. On the contrary, one should

celebrate it since it allows us to be more efficient.

In fact, if we never have to combine a component with anything else into a

larger system, and if nothing can go wrong with the component, then it is perfectly

fine to understand this component only at the level of its abstraction.

But if we have to combine multiple components into a larger system, we

should be careful not to allow their abstractions to be the deepest level of our

understanding. If we don’t know the components below the level of their abstrac-

tions, then we are at the mercy of them working together without our intervention.

If they don’t work together, and we are unable to go below the level of abstraction,

we are stuck. And that is the state we should take care not to find ourselves in.

1.3.2 Hardware vs. Software

Many computer scientists and engineers refer to themselves as hardware people

or software people. By hardware, they generally mean the physical computer and

6 chapter 1 Welcome Aboard

all the specifications associated with it. By software, they generally mean the pro-

grams, whether operating systems like Android, ChromeOS, Linux, or Windows,

or database systems like Access, MongoDB, Oracle, or DB-terrific, or applica-

tion programs like Facebook, Chrome, Excel, or Word. The implication is that

the person knows a whole lot about one of these two things and precious little

about the other. Usually, there is the further implication that it is OK to be an

expert at one of these (hardware OR software) and clueless about the other. It is

as if there were a big wall between the hardware (the computer and how it actu-

ally works) and the software (the programs that direct the computer to do their

bidding), and that one should be content to remain on one side of that wall or

the other.

The power of abstraction allows us to “usually” operate at a level where we

do not have to think about the underlying layers all the time. This is a good thing.

It enables us to be more productive. But if we are clueless about the underlying

layers, then we are not able to take advantage of the nuances of those underlying

layers when it is very important to be able to.

That is not to say that you must work at the lower level of abstraction and not

take advantage of the productivity enhancements that the abstractions provide.

On the contrary, you are encouraged to work at the highest level of abstraction

available to you. But in doing so, if you are able to, at the same time, keep in

mind the underlying levels, you will find yourself able to do a much better job.

As you approach your study and practice of computing, we urge you to take

the approach that hardware and software are names for components of two parts

of a computing system that work best when they are designed by people who take

into account the capabilities and limitations of both.

Microprocessor designers who understand the needs of the programs that

will execute on the microprocessor they are designing can design much more

effective microprocessors than those who don’t. For example, Intel, AMD, ARM,

and other major producers of microprocessors recognized a few years ago that a

large fraction of future programs would contain video clips as part of e-mail,

video games, and full-length movies. They recognized that it would be impor-

tant for such programs to execute efficiently. The result: most microprocessors

today contain special hardware capability to process those video clips. Intel

defined additional instructions, initially called their MMX instruction set, and

developed special hardware for it. Motorola, IBM, and Apple did essentially

the same thing, resulting in the AltiVec instruction set and special hardware to

support it.

A similar story can be told about software designers. The designer of a large

computer program who understands the capabilities and limitations of the hard-

ware that will carry out the tasks of that program can design the program so it

executes more efficiently than the designer who does not understand the nature of

the hardware. One important task that almost all large software systems need to

carry out is called sorting, where a number of items have to be arranged in some

order. The words in a dictionary are arranged in alphabetical order. Students in

a class are often graded based on a numerical order, according to their scores

on the final exam. There is a large number of fundamentally different programs

one can write to arrange a collection of items in order. Donald Knuth, one of the

1.4 A Computer System 7

top computer scientists in the world, devoted 391 pages to the task in The Art
of Computer Programming, vol. 3. Which sorting program works best is often

very dependent on how much the software designer is aware of the underlying

characteristics of the hardware.

The Bottom Line We believe that whether your inclinations are in the direction

of a computer hardware career or a computer software career, you will be much

more capable if you master both. This book is about getting you started on the

path to mastering both hardware and software. Although we sometimes ignore

making the point explicitly when we are in the trenches of working through a

concept, it really is the case that each sheds light on the other.

When you study data types, a software concept, in C (Chapter 12), you will

understand how the finite word length of the computer, a hardware concept,

affects our notion of data types.

When you study functions in C (Chapter 14), you will be able to tie the rules
of calling a function with the hardware implementation that makes those rules

necessary.

When you study recursion, a powerful algorithmic device (initially in

Chapter 8 and more extensively in Chapter 17), you will be able to tie it to the

hardware. If you take the time to do that, you will better understand when the

additional time to execute a procedure recursively is worth it.

When you study pointer variables in C (in Chapter 16), your knowledge of

computer memory will provide a deeper understanding of what pointers pro-

vide, and very importantly, when they should be used and when they should be

avoided.

When you study data structures in C (in Chapter 19), your knowledge of com-

puter memory will help you better understand what must be done to manipulate

the actual structures in memory efficiently.

We realize that most of the terms in the preceding five short paragraphs may

not be familiar to you yet. That is OK; you can reread this page at the end of the

semester. What is important to know right now is that there are important topics

in the software that are very deeply interwoven with topics in the hardware. Our

contention is that mastering either is easier if you pay attention to both.

Most importantly, most computing problems yield better solutions when the

problem solver has the capability of both at his or her disposal.

1.4 A Computer System
We have used the word computer more than two dozen times in the preceding

pages, and although we did not say so explicitly, we used it to mean a system

consisting of the software (i.e., computer programs) that directs and specifies the

processing of information and the hardware that performs the actual processing

of information in response to what the software asks the hardware to do. When

we say “performing the actual processing,” we mean doing the actual additions,

multiplications, and so forth in the hardware that are necessary to get the job

8 chapter 1 Welcome Aboard

done. A more precise term for this hardware is a central processing unit (CPU),

or simply a processor or microprocessor. This textbook is primarily about the

processor and the programs that are executed by the processor.

1.4.1 A (Very) Little History for a (Lot) Better Perspective

Before we get into the detail of how the processor and the software associated

with it work, we should take a moment and note the enormous and unparalleled

leaps of performance that the computing industry has made in the relatively short

time computers have been around. After all, it wasn’t until the 1940s that the

first computers showed their faces. One of the first computers was the ENIAC

(the Electronic Numerical Integrator and Calculator), a general purpose electronic

computer that could be reprogrammed for different tasks. It was designed and built

in 1943–1945 at the University of Pennsylvania by Presper Eckert and his colleagues.

It contained more than 17,000 vacuum tubes. It was approximately 8 feet high, more

than 100 feet wide, and about 3 feet deep (about 300 square feet of floor space). It

weighed 30 tons and required 140 kW to operate. Figure 1.1 shows three operators

programming the ENIAC by plugging and unplugging cables and switches.

About 40 years and many computer companies and computers later, in the

early 1980s, the Burroughs A series was born. One of the dozen or so 18-inch

boards that comprise that machine is shown in Figure 1.2. Each board contained

50 or more integrated circuit packages. Instead of 300 square feet, it took up

around 50 to 60 square feet; instead of 30 tons, it weighed about 1 ton, and instead

of 140 kW, it required approximately 25 kW to operate.

Figure 1.1 The ENIAC, designed and built at University of Pennsylvania, 1943–45.
c©Historical/Getty Images

1.4 A Computer System 9

Figure 1.2 A processor board, vintage 1980s. Courtesy of Emilio Salguerio

Fast forward another 30 or so years and we find many of today’s computers on

desktops (Figure 1.3), in laptops (Figure 1.4), and most recently in smartphones

(Figure 1.5). Their relative weights and energy requirements have decreased

enormously, and the speed at which they process information has also increased

enormously. We estimate that the computing power in a smartphone today (i.e.,

how fast we can compute with a smartphone) is more than four million times the

computing power of the ENIAC!

Figure 1.3
A desktop computer.
c©Joby Sessions/
Future/REX/
Shutterstock

Figure 1.4 A laptop. c©Rob
Monk/Future/
REX/Shutterstock

Figure 1.5 A smartphone. c©Oleksiy
Maksymenko/
imageBROKER/REX/Shutterstock

